In this video presentation, Aleksa Gordić explains what it takes to scale ML models up to trillions of parameters! He covers the fundamental ideas behind all of the recent big ML models like Meta’s OPT-175B, BigScience BLOOM 176B, EleutherAI’s GPT-NeoX-20B, GPT-J, OpenAI’s GPT-3, Google’s PaLM, DeepMind’s Chinchilla/Gopher models, etc. He covers the ideas of data parallelism, model/pipeline parallelism (e.g. GPipe, PipeDream, etc.), model/tensor parallelism (Megatron-LM), activation checkpointing, mixed precision training, ZeRO (zero redundancy optimizer) from Microsoft’s DeepSpeed library and many more. Along the way, many top research papers are highlighted. The video presentation is sponsored by AssemblyAI.
Papers:
✅ Megatron-LM paper: https://arxiv.org/abs/1909.08053
✅ ZeRO (DeepSpeed) paper: https://arxiv.org/abs/1910.02054v3
✅ Mixed precision training paper: https://arxiv.org/abs/1710.03740
✅ Gpipe (pipeline parallelism) paper: https://arxiv.org/abs/1811.06965
Articles:
✅ Collective ops: https://en.wikipedia.org/wiki/Collect…
✅ IEEE float16 format: https://en.wikipedia.org/wiki/Half-pr…
✅ Google Brain’s bfloat16 format: https://cloud.google.com/blog/product…
Sign up for the free insideBIGDATA newsletter.
Join us on Twitter: https://twitter.com/InsideBigData1
Join us on LinkedIn: https://www.linkedin.com/company/insidebigdata/
Join us on Facebook: https://www.facebook.com/insideBIGDATANOW